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Całkujemy przez części (całkujemy f, różniczkujemy g).
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W całce z równania (4) podstawiamy t jak poprzednio i mamy do policzenia całkę:∫
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(zastosowałem standardowy rozkład funkcji wymiernej). Całka (5) daje:
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Po drobnej kosmetyce i wstawieniu całki (6) do (4) dostajemy:∫
=
2
3
(x− 6)

√
x+ 3 ln

(√
x− 3

)
− 2
9
(x− 6)

√
x+ 3− 6√

6
ln

(√
x+ 3 +

√
6√

x+ 3−
√
6

)
(7)

i jeszcze grupujemy podobne wyrazy:∫
=
2
9
(x− 6)

√
x+ 3

[
−1 + 3 ln

(√
x− 3

)]
−
√
6 ln

(√
x+ 3 +

√
6√

x+ 3−
√
6

)
(8)

Wynik (8) po zróżniczkowaniu daje połowę funkcji pierwotnej. Naprawdę nie wiem, gdzie robię błąd!


