
Pierwsza funkcja:
f(x, y) = ex(cos y + x sinx)

Ta funkcja na pewno spełnia przemienność, bo funkcje składowe są wszędzie różniczkowalne więc
kolejność obliczania pochodnych cząstkowych nie gra roli. Ale sprawdźmy. Pochodna po x:
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W tym wypadku twierdzenie z zadania się zgadza.

Druga funkcja:
f(x, y) = xy

Ta funkcja jest różniczkowalna dla x > 0. Przekształcamy ją do postaci z “e”.
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W drugą stronę:
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W tym wypadku twierdzenie z zadania też się zgadza przy założeniu dodatniości x.


