1) Wielomian W(x)=x^4+4x^3+cx^2+dx+1, gdzie c, d − liczby całkowite, ma dwa
Pierwiastkami  wymiernymi  tego  wielomianu  mogą  być  tylko liczby  -1  i  1  (  wynika  to  z  twierdzenia o  pierwiastkach  wymiernych  wielomianu  a  należy  pamiętać,  że  liczby  całkowite  tez  są  wymierne)

Obliczamy  c i d
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    dodajemy  stronami
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Wielomian  ten powinien  dzielić  się  bez  reszty  przez  (x-1)(x+1)=x2 – 1

       x2 + 4x  – 1 
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Szukamy  pozostałych  pierwiastków  wielomianu  o  ile  są
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2) Ile rozwiązań wymiernych ma równanie 2x^3+3x^2+1=0

Wszystkie możliwe  liczby,  które  mogą  być  wymiernymi  pierwiastkami  to  
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Można  sprawdzić,  czy  dla  którejś  z  tych  liczb  wielomian  przyjmuje  wartość  zer- wówczas  liczba  taka  będzie  pierwiastkiem
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Wielomian  nie  posiada  pierwiastków  wymiernych  czyli  ilość  wymiernych  rozwiązań  to  0
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