
Tekst na niebiesko nie należy do rozwiązania. Sorry za wstawki z fizyki, ale chyba jesteś na matmie,
nie na fizyce, dlatego dodałem kilka objaśnień. W razie czego - przepraszam!

Fizyka ruchu ciała w górę:

Oś X jest skierowana pionowo, za dodatni przyjmujemy zwrot “w górę”. Wektor prędkości początko-
wej −→v0 ma zwrot dodatni. Za początek ruchu przyjmijmy x0 = 0.

Trzeba osobno opisać wznoszenie się i opadanie, gdyż siła tarcia, zawsze skierowana przeciwnie do
kierunku ruchu, ma różne zwroty w obu przypadkach. Dla ruchu w górę:

• Na ciało działa siła ciężkości Q = mg. (m - masa ciała, g - przyspieszenie ziemskie). Jest ona
skierowana w dół, czyli trzeba ją wziąć ze znakiem minus dalej w tekście.

• Na ciało działa siła oporu powietrza (tarcia) T = kv2. Jak poprzednio jest ona skierowana w dół,
bierzemy ją z minusem.

Z drugiej zasady dynamiki Newtona, gdy przez “a” oznaczymy przyspieszenie (mające zwrot “w górę”)
dostaniemy równanie (1) (obie siły, Q i T, przeciwdziałają ruchowi)

ma = Q+ T = −mg − kv2 (1)

Z fizyki wiadomo, że przyspieszenie jest pochodną prędkości po czasie, czyli a = dv/dt więc równa-
nie (1) zapisujemy, po podzieleniu obu stron przez “m”, jako:
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Koniec fizyki.

Równanie (2) to zwykłe równanie o rozdzielonych zmiennych, dzielimy je przez prawą stronę i mamy,
z drobną kosmetyką:
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Po podstawieniu u = v
√
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mg w mianowniku pojawi się 1 + u2 i po scałkowaniu obu stron (nie jestem
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Jak się z tego obliczy “v” to wychodzi:
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Stałą C wyznaczamy z warunku v(0) = v0 czyli
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Stała C ma wymiar czasu (jak chcesz sprawdzić, to zauważ, że wymiarem “k” są kg/metry). Nazwijmy
ją więc t0. Mamy już przyjemniejszy wzór na v(t)
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Zrobiłem wykres v(t) dla: g=10, m=1, k=0,1 v0=100.
Wynik jest w pliku “v-od-t-w-gore.pdf”. v(t) ma postać: v(t) = 10 tg(1.47113− t)
Po czasie około 1,47 s prędkość spada do zera i wzór dla ruchu w górę przestaje obowiązywać.



Zobaczmy jeszcze, co się dzieje, gdy tłumienie (czyli stała “k”) dąży do zera. We wzorze (6), dla
małych k, funkcja arctg(z) zachowuje się jak z, czyli stała C (nazwana t0) dąży do:
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a we wzorze (7) także tg(z) zachowuje się jak z, czyli prędkość dąży do:
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czyli do wzoru na prędkość w ruchu jednostajnie opóźnionym w polu grawitacyjnym.

Możemy już odpowiedzieć na jedno z pytań z zadania: Czaswznoszenia się ciała wynosi t0, obliczone
jako “C” we wzorze (6).

Obliczmy maksymalną wysokość xmax. Przyjmijmy x0 = 0 na początku ruchu i scałkujmy równanie (7)
w zakresie od 0 do t0. To jest zwykła całka z tg(z), pominę szczegóły. Program mówi, że wychodzi:

xmax = −m
k

ln
[
cos

(
arctan(v0

√
k/(gm))

)]
(10)

Ten kosinus z arctg można jeszcze uprościć gdyż cos[arctan(z)] = 1/
√

1 + z2 i dostajemy:
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Zauważ, że gdy k dąży do zera to ln(1+z) zachowuje się jak z, całe wyrażenie dąży do:
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czyli do wzoru na wysokość w rzucie pionowym bez oporu powietrza. To potwierdza nasze wyniki.

Zajmiemy się teraz czasem spadania i prędkością w chwili upadku.

Zrobimy jak poprzednio, ale przyjmijmy za dodatni kierunek w dół, więc wektor −→g ma zwrot dodatni,
wektor −→v (t) także, siła tarcia ma zwrot ujemny. Znajdziemy zależność v(t) oraz x(t). Założymy, że
x(0) = 0 i policzymy czas, kiedy x osiąga wartość xmax z równania (11). Podstawiając ten czas do v(t)
znajdziemy prędkość vmax w chwili upadku.

Równanie różniczkowe na prędkość ma teraz postać:

m
dv

dt
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Różnica jest w znakach, ale prowadzi to do zupełnie innego wyniku. Dzielimy przez mg, rozdzielamy
zmienne:
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Po scałkowaniu otrzymujemy: √
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Rozwiązaniem nie jest już arc tangens lecz arc tangens hiperboliczny. Znajdujemy v(t). Ponieważ
v(0) = 0 to ze wzoru (15) wynika, że C = 0.
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Sprawdźmy, co dzieje się gdy tłumienie jest małe. Dla małych z tgh(z) zachowuje się jak z czyli
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czyli v(t) wygląda jak przy swobodnym spadku z przyspieszeniem g.

Całkujemy równanie (16) w granicach od 0 do xmax aby znaleźć czas spadania tmax
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Sprawdźmy, co dziele się dla małych k. Funkcja cosh(z) dla małych z zachowuje się jak 1 + z2/2, a z
kolei ln(1 + z2/2) jak z2/2. Wobec tego
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czyli jak przy swobodnym spadku.

Z równania (18) wyliczamy tmax. Mnożymy obie strony przez k/m, umieszczamy w wykładniku ez

i rozpisujemy cosh(z)
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Podstawiamy w = eu i rozwiązujemy powstające równanie kwadratowe w2 − 2yw + 1 = 0, co daje:
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Przypomnijmy sobie równanie (11) na xmax. Gdy pomnożymy (k/m)xmax to wyrażenie na y możemy
zapisać jako:
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co prowadzi do rozwiązań w1, w2 w postaci:
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Przypominam, że w = eu, czyli u = ln(w) natomiast u jest bezwymiarowe i proporcjonalne do tmax.
Popatrz na wykresy w załączniku “pierwiastki-w1-w2.pdf”. Czerwony wykres odpowiada w1(v0), a
zielony w2(v0) (jednostki na poziomej osi są umowne).

Gdyby przyjąć rozwiązanie w1 (które jest zawsze mniejsze od jedynki) to logarytmując je dostalibyśmy
ujemny czas tmax. Jest to niefizyczne więc rozwiązaniem na tmax jest:
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Jak zwykle sprawdźmy, co dziele się przy braku tarcia. Gdy k jest małe to umiejętnie rozwijając w
szereg logarytm (robiłem to programem) dostajemy:
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zgodnie z wynikiem dla ruchu bez tarcia; czasy wznoszenia się i spadania są jednakowe, początkowa
prędkość v0 jest tracona po czasie tmax.



Obliczmy jeszcze końcową prędkość vmax wstawiając tmax do równania (16). Zauważ, że czynniki√
kg/m i
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przy tmax przez “z” i rozpisujemy tgh().
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Podstawiamy “z” i po niemiłej dłubaninie, którą na szczęście robi program, mamy:
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Przy minimalnym tarciu z pierwiastka w liczniku oszczędzamy tylko v0
√
mgk, w mianowniku zapomi-
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czyli końcowa prędkość jest równa początkowej, jak można było oczekiwać.

Mam nadzieję, że się nie pomyliłem. Pozdrowienia - Antek


