
Tekst pisany na niebiesko jest komentarzem, nie należy do rozwiązania.

1. Pierwsza granica
Dzielimy licznik i mianownik przez n5.
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1. Druga granica
Spełnione są warunki stosowania de l’Hospitala. Licznik i mianownik są różniczkowalne w liczbach
rzeczywistych i w nieskończoności dążą do nieskończoności. Stosujemy tw. de l’Hospitala dwukrotnie.
Pierwszy raz:

= lim
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Drugi raz, warunki ponownie są spełnione. Mianownik dąży do nieskończoności.
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2.
Liczymy granicę w x = 3. Dzielimy licznik i mianownik przez x2
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Wartość granicy f(x) gdy x→ 3 (z dowolnej strony) jest różna od definicji f(3) = –0,5.
Funkcja jest nieciągła w x = 3.

3.
Powiększamy licznik zastępując 9 przez drugie 5n oraz pomijamy w mianowniku 4n. Dla dużych “n”
mamy zależność:
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Warunek konieczny zbieżności szeregu bn jest spełniony gdyż ułamek 5/7 jest mniejszy od 1 i wyraz
bn → 0 w nieskończoności. Stosujemy kryterium Cauchy’ego do pokazania zbieżności szeregu bn.
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ponieważ pierwiastek n-tego stopnia z 2 dąży do 1. Granica określana przez kryterium Cauchy’ego
jest mniejsza od 1, więc ciąg bn jest zbieżny. Wobec tego zbieżny jest także ciąg z zadania.


